
HAL Id: hal-02123112
https://hal.science/hal-02123112v1

Submitted on 7 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multidimensional Harmonic Retrieval Based on
Vandermonde Tensor Train

Yassine Zniyed, Remy Boyer, André L. F. de Almeida, Gérard Favier

To cite this version:
Yassine Zniyed, Remy Boyer, André L. F. de Almeida, Gérard Favier. Multidimensional
Harmonic Retrieval Based on Vandermonde Tensor Train. Signal Processing, 2019, 163,
�10.1016/j.sigpro.2019.05.007�. �hal-02123112�

https://hal.science/hal-02123112v1
https://hal.archives-ouvertes.fr


Multidimensional Harmonic Retrieval Based on
Vandermonde Tensor Train1
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Abstract

Multidimensional Harmonic Retrieval (MHR) is at the heart of important signal-
based applications. The exploitation of the large number of available measure-
ment diversities for data fusion increases inexorably the tensor order/dimensionality.
The need to mitigate the “curse of dimensionality” in this case is crucial. To
efficiently cope with this massive data processing problem, a new scheme called
JIRAFE (Joint dImensionality Reduction And Factors rEtrieval) is proposed
to estimate the parameters of interest in the MHR problem, namely, the MP
angular-frequencies, of the associated P -order rank-M Canonical Polyadic De-
composition (CPD). Our methodology consists of two main steps. The first one
breaks the high-order measurement tensor into a collection of graph-connected
3-order tensors, each following a 3-order CPD of rank-M , also called Tensor
Train (TT)-cores. This result is based on a model property equivalence between
the CPD and the Tensor Train decomposition (TTD) with coupled TT-cores.
The second step makes use of a Vandermonde based rectified Alternating Least
Squares (RecALS) algorithm to estimate the factors of interest, by enforcing the
desired matrix structure. We show that our methodology has several advantages
in terms of flexibility, robustness to noise, computational cost and automatic
pairing of the parameters of interest with respect to the tensor order.
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1. Introduction

Multidimensional Harmonic Retrieval (MHR) [2, 3] is a classical signal pro-
cessing problem that has found several applications in spectroscopy [4], wireless
communications [5], sensor array processing [6, 7], to mention a few. The Mul-
tidimensional Harmonic (MH) model can be viewed as the tensor-based gen-
eralization of the one-dimensional harmonic one, resulting from the sampling
process over a multidimensional regular grid. As a consequence, the MH model
can be expressed in tensor form as a constrained Canonical Polyadic Decompo-
sition (CPD) [8, 9, 10] with structured Vandermonde factor matrices. Unlike
the sum of M one-dimensional harmonics, which is parametrized by M angular-
frequencies only, the P -dimensional harmonic model needs the estimation of a
large number (PM) of angular-frequencies of interest. We can easily note that
the number of unknown parameters and the order of the associated data tensor
grow with P . For instance, in the problem of dual-polarized MIMO (Multiple-
Input Multiple-Output) channel estimation, the data tensor order is five [11].
Moreover, it is likely that the joint exploitation of multi-diversity/modality sens-
ing technologies for data fusion [12, 13, 14] further increases the data tensor
order. This trend is usually called the “curse of dimensionality” [15, 16, 17] and
the challenge here is to reformulate a high-order tensor as a set of low-order
tensors. In this context, we observe an increasing interest for the tensor net-
work theory (see [15] and references therein). Tensor network provides a useful
and elegant graphical representation of a high-order tensor into a factor graph
where the nodes are low-order tensors, called cores, and the edges encode their
dependencies, i.e., their common dimensions, often called “rank”. In addition,
tensor network allows to perform scalable/distributed computations over the
cores [15]. In the tensor network framework, Hierarchical/tree Tucker [18, 19]
and Tensor Train (TT) [20] are two popular representations of a high-order ten-
sor into a graph-connected low-order (at most 3) tensors. In this work, we focus
our effort on the TT formalism for its simplicity and compactness in terms of
storage cost. Unlike the hierarchical Tucker model, TT is exploited in many
practical and important contexts as, for instance, tensor completion [21], blind
source separation [22], and machine learning [23], to mention a few. In the
context of the MHR problem, this strategy has at least two advantages. First,
it is well-known that the convergence of the Alternating Least Squares (ALS)
algorithm becomes more and more difficult when the order increases [24, 25, 26].
To deal with this problem, applying ALS on lower-order tensors is preferable.
The second argument is to exploit some latent coupling properties between the
cores [27, 23] to propose new efficient estimators.

The Maximum Likelihood estimator [28, 29] is the optimal choice from an
estimation point of view, since it is statistically efficient, i.e., its Mean Squared
Error (MSE) reaches the Cramér-Rao Bound (CRB) in the presence of noise.
The main drawback of the maximum likelihood estimator is its prohibitive com-
plexity cost. This limitation is particularly severe in the context of a high-order
data tensor. To overcome this problem, several low- complexity methods can

2



be found in the literature. These methods may not reach, sometimes, the CRB,
but they provide a significant gain in terms of the computational cost compared
to the maximum likelihood estimator. There are essentially two main families of
methods. The first one is based on the factorization of the data to estimate the
well-known signal/noise subspace such as the Estimation of Signal Parameters
via Rotational Invariance Techniques (ESPRIT) [30], the ND-ESPRIT [31], the
Improved Multidimensional Folding technique [32], and the CP-VDM [33]. The
second one is based on the uniqueness property of the CPD. Indeed, factorizing
the data tensor thanks to the ALS algorithm [34] allows a direct identification of
the unknown parameters by inspection of the factor matrices. However, the ALS
algorithm [25], as well as most of its variants, do not take into account the Van-
dermonde structure of the factor matrices. Potentially, discarding this physical
a priori knowledge on the MH model may degrade the estimation performance of
the unknown parameters [35]. So, recently, a new family of estimation methods
has been introduced in [36]. This approach, called RecALS for Rectified ALS,
modifies the ALS method by integrating a rectification/reinforcement strategy
on the Vandermonde structure of the factor matrices.

In this work, we propose a new scheme called JIRAFE for Joint dImen-
sionality Reduction And Factors rEtrieval. JIRAFE is composed of two main
steps. The first one is the dimensionality reduction of a high-order harmonic
model thanks to a Tensor Train decomposition (TTD) [20]. We show how a
model equivalence between the CPD and TTD [1] can be exploited to design
an efficient optimization strategy exploiting a sum of coupled Least Squares
(LS) problems2. The second step is dedicated to the estimation of the unknown
parameters using a polynomial rooting procedure. This scheme belongs to the
RecALS family and can be viewed as an alternative to the one proposed in [36].
Our main contributions can be summarized as follows:

• Vandermonde based Tensor Train decomposition (VTTD). The
classic MHR problem is reformulated under a Vandermonde based TT
format, instead of the usual CPD formulation.

• Optimization strategy for VTTD. The structure of the TT-cores is
provided and in particular the latent coupling property existing between
the TT-cores is explained and exploited in the context of a sequential
optimization strategy of a sum of coupled LS problems. This is the first
step of JIRAFE, i.e., the dimensionality reduction step.

• New rectification strategy for Vandermonde factors. A new rec-
tification strategy for Vandemonde factors is presented and used in the
second step of JIRAFE, i.e., the retrieval step.

In the sequel, the paper is organized as follows. In Section 2, we present the

2Note that the idea of rewriting a CPD into the TT format was briefly mentioned in [20, 27],
without discussing the structure of the TT-cores resulting from a decomposition algorithm.
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MH model as a structured CPD. In Section 3, the TT decomposition and the
dimensionality reduction strategy using the TT-SVD algorithm will be detailed.
Section 4 gives the algorithmic description of the new proposed retrieval scheme.
Simulations showing the effectiveness of the proposed method are given in Sec-
tion 5, by evaluating the robustness and the computational time of the proposed
method compared to some state-of-art algorithms. Section 6 is dedicated to the
conclusion.

2. Background and Problem Statement

2.1. Notations

The notations used throughout this paper are the following ones: the su-
perscripts (·)∗, (·)T , (·)−1, (·)−T , and rank(·) denote, respectively, the complex
conjugate, the transpose, the inverse, the transpose-inverse and the rank. The
Khatri-Rao and outer products are referred to by � and ◦, respectively. The
operator diag(·) forms a diagonal matrix from its vector argument. unfoldp(·)
is the p-mode unfolded matrix [25]. The Frobenius norm is denoted by || · ||F .
Scalars, vectors, matrices and tensors are represented by x, x, X and X , respec-
tively. [X]:,n refers to the n-th column of matrix X. X and X are matrices where
the last and first rows have been deleted from matrix X (same definition is ap-
plied for vectors). Ip,M denotes the p-order identity tensor of size M ×· · ·×M ,
and I2,M = IM . CritStop is a stop criterion for the iterative algorithms that
will be chosen in the simulations. We also define the reshape function that will
be useful in the sequel. For a P -order tensor X of size N1 × · · · ×NP , we have
the unfolding matrix X(p) of size (N1 · · ·Np)× (Np+1 · · ·NP ) defined as:

X(p) = reshape

(
X ;

p∏
s=1

Ns,

P∏
s=p+1

Ns

)
, (1)

for a general matrix unfolding formula, we refer to (15) in [37].

Definition 1. The p-mode product ×p between a P -order tensor A of size
N1 × · · · × NP and a matrix B of size Mp × Np, is a P -order tensor of size
N1 × · · ·Np−1 ×Mp ×Np+1 × · · · ×NP denoted by

[A×p B]n1,...,np−1,mp,np+1,...,nP
=

Np∑
k=1

[A]n1,...,np−1,k,np+1,...,nP
[B]mp,k. (2)

Definition 2. The contraction product ×p
q between two tensors A and B of

size N1 × · · · × NQ and M1 × · · · ×MP , where Nq = Mp, is a tensor of order
Q+ P − 2 defined by [15]

[A×p
q B]n1,...,nq−1,nq+1,...,nQ,m1,...,mp−1,mp+1,...,mP

(3)

=

Nq∑
k=1

[A]n1,...,nq−1,k,nq+1,...,nQ
[B]m1,...,mp−1,k,mp+1,...,mP

. (4)
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Definition 3. A P -order tensor of size N1 × . . .×NP belonging to the family
of rank-M CPD [8] admits the following decomposition:

X =

M∑
m=1

[F1]:,m ◦ [F2]:,m ◦ . . . ◦ [FP ]:,m, (5)

or equivalently

X = IP,M ×1 F1 ×2 F2 ×3 . . .×P FP , (6)

where the p-th mode factor Fp is of size Np ×M , 1 ≤ p ≤ P .

2.2. Generalized Vandermonde Canonical Polyadic Decomposition

The MH model assumes that the measurements can be modeled as the su-
perposition of M undamped exponentials sampled on a P -dimensional grid ac-
cording to [2]

[X ]n1...nP
=

M∑
m=1

αm

P∏
p=1

znp−1
m,p , 1 ≤ np ≤ Np (7)

in which the m-th complex amplitude is denoted by αm and the pole is defined
by zm,p = eiωm,p where ωm,p is the m-th angular-frequency along the p-th

dimension, and we have zp =
[
z1,p z2,p . . . zM,p

]T
. Note that the tensor

X is expressed as the linear combination of M rank-1 tensors, each of size
N1 × . . . × NP (the size of the grid), and follows a generalized Vandermonde
CPD [38]:

X = A×1 V1 ×2 . . .×P VP (8)

where A is a M × . . .×M diagonal tensor with [A]m,...,m = αm and

Vp =
[
v(z1,p) . . . v(zM,p)

]
is a Np ×M rank-M Vandermonde matrix, where

v(zm,p) =
[
1 zm,p z2

m,p . . . z
Np−1
m,p

]T
.

We define a noisy MH tensor model of order P as

Y = X + σE (9)

where σE is the noise tensor, σ is a positive real scalar, and each entry [E]n1...nP

follows an i.i.d. circular Gaussian distribution CN (0, 1), and X has a canonical
rank equal to M .

Remark 1. The addressed MHR problem aims to estimate the PM angular-
frequencies correctly paired in terms of “source/dimension” given by the com-
plex argument of the entries of the vectors {z1, . . . , zP }, from the noisy obser-
vation tensor Y , when the order of X is strictly greater than three.
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It is important to stress that the paring and estimation operations have
to be jointly performed. Indeed, searching the tensor generated from a given
scheduling of PM parameters of interest that are the closest to the observed
tensor suffers from the well-known combinatorial explosion, especially for large
values of P .

3. Dimensionality reduction based on a train of low-order tensors

3.1. Tensor Train Decomposition

Tensor Train was first introduced in [20] for the linear algebra community.
The principle of the TTD is to factorize a P -order tensor X of size N1×· · ·×NP

into a train of P − 2 tensors/cores of order 3 and two matrices. As illustrated
on Fig 1, the TT-cores are the nodes in the graph and the edges are the com-
mon dimensions between two consecutive cores, called TT-ranks. The formal
definition of the TTD is given hereafter.

Definition 4. A P -order tensor X admits a decomposition into a train of ten-
sors if

[X ]n1,··· ,nP
=

R1,··· ,RP−1∑
r1,··· ,rP−1=1

[G1]n1,r1 [G2]r1,n2,r2 · · · [GP−1]rP−2,nP−1,rP−1
[GP ]rP−1,nP

,

(10)

or equivalently

X = G1 ×1
2 G2 ×1

3 G3 ×1
4 . . .×1

P−1 GP−1 ×1
P GP , (11)

where the TT-cores G1, Gp (2 ≤ p ≤ P − 1) and GP are, respectively, of size
N1 ×R1, Rp−1 ×Np ×Rp and RP−1 ×NP . {R1, . . . , RQ−1} are referred to by
the TT-ranks with 1 ≤ np ≤ Np and 1 ≤ p ≤ P .

Fig. 1: Graph formalism of the TTD for a P -order tensor

Remark 2. It is important to note that there exists a large number of other
graph topologies. In this case, we refer to the tensor network theory (see [15] and
references therein), as for instance, the Hierarchical/tree Tucker decomposition
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[18, 19]. It appears that, in practice, more complicated graph topologies are
not easy to exploit and, to the best of our knowledge, there is no efficient
decomposition algorithms in contrast to the TTD.

3.2. Vandermonde based TT decomposition

Due to the simple graph-based formalism of the TT, it is straightforward to
rewrite the diagonal tensor A introduced in eq. (8) as the following TTD

A = A×1
2 I3,M ×1

3 . . .×1
P−1 I3,M ×1

P IM (12)

where A is a M × M diagonal matrix with [A]m,m = αm. A graph-based
visualization is given on Fig. 2.

Fig. 2: A possible TTD of tensor A.

Plugging the TTD of tensor A into eq. (8), leads to

X = A×1 V1 ×2 . . .×P VP (13)

=
(
A×1

2 I3,M ×1
3 . . .×1

P−1 I3,M ×1
P IM

)
×1 V1 ×2 . . .×P VP (14)

= (V1A)×1
2 V2 ×1

3 . . .×1
P−1 VP−1 ×1

P VT
P (15)

where Vp = I3,M ×2 Vp is of size M ×Np×M . A representation of Vp and X
are given on Figs 3 and 4, respectively.

Fig. 3: Representation of the 3-order M ×Np ×M tensor Vp.
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Fig. 4: VTTD of tensor X corresponding to eq. (15).

According to eq. (15), the generalized Vandermonde CPD of tensor X is
equivalent to a train of (P − 2) 3-order tensors that follow a constrained rank-
M CPD with a Vandermonde factor on its 2nd mode.

3.3. TTD based on the TT-SVD algorithm

In this section, we present the retrieved TT-cores structure when the TT-
SVD algorithm [20] is applied to the original tensor in eq. (8). We first recall
that the TT-SVD algorithm is a sequential algorithm that retrieves the TT-cores
by extracting the dominant subspaces of the unfolding matrices of the original
tensor using the truncated SVD. This algorithm retrieves the original TT-cores
up to nonsingular transformation matrices [1]. In Fig. 5, we present the TT-
SVD of a 4-order tensor. Note that, at each step, the matrix of right singular

vectors is reshaped into a matrix V
(p)
(2) having one mode in one dimension and a

combination of remaining modes in the other dimension. Applying the SVD to

V
(p−1)
(2) generates matrices U(p) and V(p) containing the left and right singular

vectors, respectively. Note that the singular values are absorbed in V(p). The
TT-cores Gp are recovered from the reshaping of U(p). In the following theorem,
we give the retrieved TT-cores structure when applying the TT-SVD algorithm
to the multidimensional harmonic model in eq. (8).

Theorem 1. Applying the TT-SVD algorithm to eq. (15) with full column rank
factors, we have the following result:

G1 = V1AM−1
1 (16)

Gp = I3,M ×1 Mp−1 ×2 Vp ×3 M−T
p , where 2 ≤ p ≤ P − 1, (17)

GP = MP−1V
T
P (18)

where Mp ∈ CM×M is a nonsingular transformation matrix.

Proof. Here, we prove the result given in the preliminary article [1]. Our
methodology is based on a constructive proof. The aim is to apply the TT-
SVD algorithm to the model of interest presented in eq. (7) and to provide the
algebraic structure of the TT-cores resulting from the decomposition. Let X be
a P -order rank-M constrained CPD tensor following eq. (7) of size N1×· · ·×NP

with full column rank factors. Applying the TT-SVD algorithm to X consists
of applying sequentially the SVD to extract the dominant subspaces at each
step. In the following, we give the expression of the matrix unfoldings and the
SVD factors at each step.
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Fig. 5: TT-SVD applied to a 4-order tensor X .

• The first unfolding X(1) of size N1 × (N2 · · ·NP ) is given by:

X(1) = reshape
(
X ;N1,

P∏
s=2

Ns

)
(19)

∆
= V1A(VP �VP−1 � · · · �V2)T (20)

SVD
= U(1)V(1) (21)

where U(1) and V(1) are the left and right singular vectors matrices, re-
spectively. We recall that the diagonal singular values matrix is absorbed
in V(1). These matrices can be expressed as

U(1)M1 = V1A, (22)

V(1) = M1(VP �VP−1 � · · · �V2)T (23)

where M1 is a M ×M transformation matrix and A is defined in Section
3.2.
Note that in terms of rank we have the equality

rankX(1) = rank(V1A) = rankG1 = M. (24)

It is worth noting that the Khatri-Rao product of matrices Vp does not
decrease the rank [39], i.e., the rank of the Khatri-Rao product matrix
also equals M . From eq. (22), the expression of the first TT-core is

G1 = U(1) = V1AM−1
1 . (25)
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• From eq. (23), reshaping matrix V(1) provides

V
(1)
(2) = reshape

(
V(1);MN2,

P∏
s=3

Ns

)
(26)

∆
= (V2 �M1)(VP �VP−1 � · · · �V3)T (27)

SVD
= U(2)V(2) (28)

where U(2) and V(2) are of rank M , and can be expressed as

U(2)M2 = V2 �M1, (29)

V(2) = M2(VP �VP−1 � · · · �V3)T . (30)

The second TT-core can then be expressed as:

G2 = reshape
(
U(2);M,N2,M

)
(31)

= I3,M ×1 M1 ×2 V2 ×3 M−T
2 . (32)

• Following the same reasoning, the expression of V
(p−1)
(2) at the p-th step is

V
(p−1)
(2) = reshape

(
V(p−1);MNp,

P∏
s=3

Ns

)
(33)

∆
= (Vp �Mp−1)(VP �VP−1 � · · · �Vp+1)T (34)

SVD
= U(p)V(p) (35)

where

U(p)Mp = Vp �Mp−1, (36)

V(p) = Mp(VP �VP−1 � · · · �Vp+1)T , (37)

where Mp is a M ×M transformation matrix and the TT-core expression
is given by

Gp = reshape
(
U(p);M,Np,M

)
(38)

= I3,M ×1 Mp−1 ×2 Vp ×3 M−T
p . (39)

• At the last step, and from eq. (37), the SVD factor V(P−1) and the last
TT-core expressions are given by

GP = V(P−1) = MP−1V
T
P . (40)

Theorem 1 can be proved using (25), (32), (39) and (40).
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The meaning of the above result is that applying the TT-SVD algorithm to
eq. (8) generates 3-order TT-cores that follow a CPD, with TT-ranks all equal
to the canonical rank M (see Fig. 6). Furthermore, each CPD-train core Gp has
a common coupled factor with the two consecutive TT-cores Gp−1 and Gp+1.
Theorem 1 shows that applying the TT-SVD algorithm to eq. (8) allows to
retrieve the exact TT-cores defined in eq. (15), up to transformation matrices
Mp. These matrices Mp are change-of-basis matrices that are related to the
estimation of the dominant subspace using the SVD and TT-SVD, as shown in
the previous proof.

Remark 3. One should be cautious about reducing the above theorem to the
well-known TT model ambiguities. Indeed, each entry of a tensor following a
TT model is the product of P matrices, each of which obtained as a reshaping
of a TT-core [20]. In fact, the transformation matrices involved in the TT-SVD
algorithm coincide with the TT model ambiguities only if the factors are full
column rank3. Finally, the above theorem shows that the TT-SVD involves
lattent but crucial information in the transformation matrices that must be
estimated.

Remark 4. Under mild conditions, it is well-known that the factors of a P -
order CPD are unique up to trivial ambiguities (common column permutation
and scaling [40]). In [1], it is proved that the factors based on eq. (17) can also
be estimated with the same trivial ambiguities.

Fig. 6: 3-order CPD of the p-th TT-core. Matrices Mp−1 and Mp are latent quantities.

4. Factor retrieval scheme

4.1. JIRAFE with Vandermonde-based rectification

The proposed estimator is based on the JIRAFE principle. JIRAFE, mean-
ing Joint dImensionality Reduction And Factors rEtrieval, is composed of two
main steps.

3For a full row rank factor as for instance in wireless communications [11], the TT-cores
computed by the TT-SVD algorithm have less intuitive and more complicated expressions.
This is the subject of current research.
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1. The first one is the computation of the TTD of the initial tensor. By do-
ing this, the initial P -order tensor is broken down into P graph-connected
third-order tensors, called TT-cores as represented by Fig. 4. This dimen-
sionality reduction is an efficient way to mitigate the “curse of dimension-
ality”. To reach this goal, the TT-SVD [20] presented above is used as a
first step.

2. The second step is dedicated to the factorization of the TT-cores. Recall
the main result given by Theorem 1, i.e., if the initial tensor follows a
P -order CPD of rank M , then the TT-cores for 2 ≤ p ≤ P − 1 follow
coupled 3-order CPD of rank M . Consequently, the JIRAFE minimizes
the following criterion over the physical quantities {V1, . . . ,VP } and over
the latent quantities {M1, . . . ,MP−1}:

C = ||G1 −V1AM−1
1 ||2F + ||GP −MP−1V

T
P ||2F (41)

+

P−1∑
p=2

||Gp − I3,M ×1 Mp−1 ×2 Vp ×3 M−T
p ||2F . (42)

The above cost function is the sum of coupled LS criterions. The aim
of JIRAFE is to recover the original tensor factors using only the 3-order
tensors Gp based on the result given in eq. (17). Equation (42) is expressed
as a sum of dependent positive terms due to the coupling properties exist-
ing through the matrices {M1, . . . ,MP−1} as demonstrated in Theorem 1.
Note that the coupling properties between tensors are usually due to phys-
ical constraints [41, 12]. In our case, these properties are a result of the se-
quential structure of the TT-SVD algorithm. Matrices {M1, . . . ,MP−1}
can be considered as latent matrices, i.e., they do not have a physical
meaning, but are essential from an estimation point of view. These re-
markable coupling properties take place between a given TT-core and the
two other TT-cores connected to it in the graph-based representation (see
Fig. 6). Minimizing independently all the positive terms in eq. (42) is
a simple procedure but this also means that the structure of the prob-
lem of interest is completely eluded. On the other hand, finding jointly
{V1, . . . ,VP } and {M1, . . . ,MP−1} is not trivial and highly time consum-
ing [42, 12]. Consequently, the JIRAFE approach adopts a straightforward
sequential methodology, described in Fig. 7, to minimize the cost func-
tion C. Any 3-order algorithm existing in the literature dedicated to the
computation of a 3-order CPD can be exploited as for instance the pop-
ular ALS algorithm [34]. However, in the context of the MHR problem,
the RecALS method introduced in [36] is used and extended. The idea
of the RecALS is to associate the ALS algorithm with a Vandermonde
rectification strategy. In [36], a link between a Vandermonde vector and
the rank-1 factorization of a Toeplitz matrix is proposed. As a cheaper
alternative, the Shift Invariant Property (SIP) is proposed and described
in the next section.

Based on the new Vandermonde constrained Tensor Train modelisation in
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eq. (15), and the CPD structure of the TT-cores in Theorem 1, the idea of the
proposed scheme is to replace the estimation of the high P -order tensor by a
sequential estimation procedure that operates on 3-order tensors only. We recall
that the RecALS algorithm is an ALS-based solution that is efficient for 3-order
tensors but becomes a delicate estimator for high-order tensors. In addition,
the ALS-based techniques may require several iterations to converge, and con-
vergence is increasingly difficult when the order of the tensor increases, and it is
not even guaranteed. In the proposed solution, the use of iterative algorithms,
such as ALS, becomes easier after applying a dimensionality reduction to the
original tensor using a CPD-train model, since they are applied to (smaller)
3-order tensors. The new proposed solution is called VTT-RecALS algorithm,
and its pseudo-code is presented in Algorithm 1. The VTT-RecALS algorithm

Algorithm 1 VTT-RecALS

Input: Y , M , CritStop
Output: Estimated parameters: {z1, . . . , zP }.

1: Dimensionality reduction:

[G1,G2, · · · ,GP−1,GP ] = TT-SVD(X ,M).

2: Factor retrieval:
3: For p = 2,

[M̂1, V̂2, M̂2, z2] = RecALS3(G2,M, CritStop).

4: for p = 3 · · ·P − 1 do
5: [V̂p, M̂p, zp] = RecALS2(Gp, M̂p−1,M, CritStop)
6: end for
7: V̂1Â = G1M̂1, and V̂P = GT

PM̂−T
P−1

is actually divided into two parts. The first part is dedicated to dimensionality
reduction, i.e., breaking the dimensionality of the high P -order tensor into a
set of 3-order tensors using Theorem 1. The second part is dedicated to the
factors retrieval from the TT-cores using the RecALS algorithm presented in
the next section. It is worth noting that the factors V̂p are estimated up to
a trivial (common) permutation ambiguity [40]. As noted in [1], since all the
factors are estimated up to a unique column permutation matrix, the estimated
angular-frequencies are automatically paired.

4.2. Shift Invariance Principle (SIP)

In this section, we propose a new rectification strategy for Vandermonde
factors, which is an alternative to Toeplitz Rank-1 Approximation (TR1A) pro-
posed in [36]. The rectification strategy is called shift invariance principle (SIP),
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Fig. 7: VTT-RecALS representation

which is inspired from the notion of pencil of matrices (see [43] for instance).
It is a rectification strategy that copes with the multidimensionality of the MH
model, and is integrated into the VTT-RecALS algorithm to rectify the Van-
dermonde factors.

4.2.1. The SIP criterion

Note that in a noiseless scenario, each Vandermonde factor matrix Vp in (8)
satisfies the following equality [44, 45]

Vp = Vpdiag(zp),

where Vp is the p-th factor in eq. (8). Let us now consider the following cost
function:

min
zp

C(zp) where C(zp) = ||Vp −Vpdiag(zp)||2F =

M∑
m=1

P (zm,p) (43)

in which P (zm,p) = ||v(zm,p)−v(zm,p)zm,p||2. Minimizing eq. (43) with respect
to zp is equivalent to minimizing each positive term P (zm,p) in the sum. In
addition, P (zm,p) is not a function of zm′,p for m′ 6= m. Thus, minimizing
eq. (43) with respect to zp is equivalent to solve M independent problems of
the following form:

min
zm,p

P (zm,p) where P (zm,p) = −z∗m,p ·Q(zm,p) (44)

and

Q(zm,p) = am,pz
2
m,p − bm,pzm,p + a∗m,p (45)
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in which am,p = v(zm,p)Hv(zm,p), bm,p = ||v(zm,p)||2+||v(zm,p)||2, and Q(zm,p)
is a second degree polynomial where the argument of the two roots is

ω̂m,p = ∠ẑm,p = ∠

bm,p ±
√
b2m,p − 4|am,p|2

2am,p

 = ∠

(
1

am,p

)
, (46)

where ω̂m,p is the estimate of the m-th angular-frequency along the p-th dimen-
sion.
The result in eq. (46) is integrated in the RecALS3 algorithm. We denote
by RecALS3, the RecALS applied to a 3-order tensor, while RecALS2 denotes
the RecALS applied to a 3-order tensor using the knowledge of one factor.
The RecALS3 algorithm used in Algorithm 1 is summarized in Algorithm 2.
RecALS2 has a similar algorithmic description as Algorithm 2, removing step
3, since Mp−1 becomes an a priori known input. These algorithms are applied
to the resultant 3-order TT-cores to recover the 3 factors with a Vandermonde
2nd mode factor.

Algorithm 2 Rectified Tri-ALS (RecALS3)

Input: Gp, M , CritStop
Output: Estimated parameters: {ω1,p, . . . , ωM,p}.

1: Initialize: V̂p, M̂−T
p

2: while CritStop is false do

3: M̂p−1 = unfold1Gp ·
(
(M̂−T

p � V̂p)T
)†

4: V̂p = unfold2Gp ·
(
(M̂−T

p � M̂p−1)T
)†

5: for m = 1 · · ·M do
6: am,p = v(zm,p)Hv(zm,p)

7: ωm,p = ∠
(

1
am,p

)
8: zm,p = eiωm,p

9: end for
10: V̂p := [v(z1,p) . . .v(zM,p)]

11: M̂−T
p = unfold3Gp ·

(
(V̂p � M̂p−1)T

)†
12: end while

4.2.2. Comparison with other RecALS scheme

It is worth noting that, for each parameter ωm,p, the TR1A method, pro-
posed in [36], for a P -order rank-M tensor of size N × · · · ×N , is based on (i)
the rank-1 diagonalization to obtain the dominant eigen-vector u of a rank-1
N × N Toeplitz matrix and (ii) the computation of the angle of the product
[u]1[u]∗2. This cost is evaluated to O(N +1). So, for the entire set of parameters
of interest, the final computation cost for the TR1A method is evaluated to
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O(N ·P ·M +P ·M). In the SIP methodology, only MP inner products have to
be computed. Each inner product implies N − 1 sums and multiplications, thus
the complexity is evaluated to O(N − 1). The overall cost of the SIP method
is thus O(N · P ·M − P ·M). We can see that the additional term O(PM) is
involved in the TR1A method with respect to the SIP one. This quantity may
be large for high values of P .

5. Simulation results

This section is organized as follows.

- In section 5.1, the interest of the VTT approach is illustrated and studied.

(a) Paragraph 5.1.1 compares the VTT-RecALS-SIP algorithm with the
CPD-RecALS-SIP algorithm to evaluate the interest of using the
VTT instead of the CPD.

(b) Paragraph 5.1.2 studies the impact of the parameters P and N on
the estimation accuracy of the VTT-RecALS-SIP algorithm.

- Section 5.2 is dedicated to the comparison of the VTT-RecALS-SIP with
the state-of-art estimators.

(a) In terms of robustness to noise in paragraph 5.2.1.
(b) In terms of computational time in paragraph 5.2.2.

It is worth noting that the study of the impact of the parameters dimension,
rank and order, is important, since they can be related to physical quantities
in realistic applications. For instance, in the problem of dual-polarized MIMO
channel estimation [11], the dimension, rank and order represent respectively,
the number of sensors/antennas at the transmission and reception, the number
of dominant paths and the number of spatial diversities at the reception and
transmission.
The simulations were performed on a PC equipped with Matlab2016b, an i7,
2.10GHz processor and 8Gb RAM.
Note that the N × M Vandermonde factors are generated based on a single

realization of ωm,p following a uniform distribution in ]0, π[. Let f
(
X̂

(t))
=

||X − X̂
(t)
||F , where X̂

(t)
denotes the estimated tensor at the t-th iteration.

The convergence test, noted as CritStop, for RecALS algorithms is chosen

such that

∣∣∣f(X̂ (t)
)
−f
(
X̂ (t+1)

)∣∣∣
f
(
X̂ (t)

) < ε, or when the number of iterations exceeds

1000. The signal to noise ratio (SNR) is defined as

SNR [dB] = 10 log
( ||X ||2F
||σE||2F

)
,

with E drawn from a complex circular i.i.d. Gaussian distribution with zero
mean and unit variance. The plotted CRB is the one calculated in [46]. The
rank M is supposed to be perfectly known in the simulations.

The MSE is defined as MSE = 1
MC

∑MC
k=1

∑P
p=1

∑M
m=1(ωm,p− ω̂(k)

m,p)2, where ω̂
(k)
m,p
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is the estimation of ωm,p at the k-th run and MC is the number of Monte-
Carlo runs. The depicted MSE is the error over the angular frequencies, and
is obtained by averaging the results over 1000 independent Monte Carlo runs,
truncated from 5% worst and 5% best MSEs to eliminate ill-convergence exper-
iments and outliers.

5.1. Advantages of the TT approach

5.1.1. VTT over CPD

In this section, we show the interest of using the VTT model over the CPD in
terms of noise robustness. The aim of this section is to compare VTT and CPD,
through the comparison of VTT-RecALS-SIP and CPD-RecALS-SIP, using the
proposed solution SIP presented in Section 4.2.
In Fig. 8, the algorithms VTT-RecALS-SIP and CPD-RecALS-SIP are applied
to a 6-order tensor. The rank is fixed at M = 3 and the dimension N = 6.
We can remark that both methods are efficient for a wide range of SNR, with a
better robustness for the VTT-RecALS-SIP for low SNR. Similar behavior was
found for a rank M = 2. We also noticed that for N = 8, M = 2 and P = 6, i.e.,
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Fig. 8: MSE vs SNR in dB for P = 6 with M = 3, N = 6.

for a lower number (PM) of parameters to be estimated, and a higher number
of samples compared to the last experiment, the MSE of the VTT-RecALS-SIP
gets closer to the CRB for low SNR, meanwhile the CPD-RecALS-SIP keeps the
same behavior. It is worth noting that the effectiveness of VTT-RecALS-SIP
over the CPD-RecALS-SIP in the low SNR range can be justified by the noise
reduction property of the truncated SVD when the TT-SVD is applied.
Note that the well-known threshold effect in the MSE curves indicates the limit
SNR between the two regimes, i.e., when the estimator fails and succeeds to
estimate the parameters of interest [47, 48, 49]. So, this is a key quantity
to assess the quality of an estimator in a practical context (see for instance
[50, 51]). Thanks to the dimensionality reduction step performed here with
VTT, this SNR threshold is improved at least by 10 dB compared to the CPD
solution in Fig. 8.
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5.1.2. Impact of parameters P and N on the VTT-RecALS-SIP

The purpose of next simulations to evaluate the impact of parameters P and
N on the behavior of the VTT-RecALS-SIP algorithm. First, in Fig. 9, we fix
P = 6, M = 2, SNR = 5dB and vary the dimension N . Note that the MSE
continuously decreases when the dimension is increased, which is predictable,
since the number (MP ) of parameters is fixed and the number NP of samples
grows with dimension N . In Fig. 10, we fix N = 6, M = 2, SNR = 5dB and
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Fig. 9: MSE vs tensor dimension for P = 6 with M = 2, SNR = 5dB (impact of N).

vary the tensor order P . Here, both, the number (MP ) of parameters and NP

of samples grow, but since this latter grows faster with P , the MSE of VTT-
RecALS-SIP linearly decreases, which shows that the proposed method becomes
more efficient when the order of the MH tensor increases.
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Fig. 10: MSE vs tensor order for N = 6 with M = 2, SNR = 5dB (impact of P ).

5.2. VTT-RecALS-SIP versus the state-of-art estimators

After showing the interest of the VTT-RecALS-SIP over the CPD-RecALS-
SIP, in this section, we compare the proposed VTT-RecALS-SIP algorithm with
different state-of-art schemes such as the CPD-RecALS-TR1A [36], the ND-
ESPRIT [31] and the CP-VDM [28]. Like for the first experiments, different
values of parameters are considered. In Tab. 1, we give the chosen values in
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each figure. Note that only one parameter is changed from an experiment to
another.

Table 1: Summary of chosen parameters in Section 5.2

Dimension N Rank M Order P
Fig. 11 6 2 4
Fig. 12 6 3 4
Fig. 13 6 2 6
Fig. 14 8 2 6

5.2.1. Robustness to noise

In Fig. 11, we fix P = 4, M = 2 and N = 6. We can remark that the
VTT-RecALS-SIP has the MSE closest to the CRB for positive SNR, keeping
in mind that P = 4 is not a very high order, which is thus not the most
interesting case. Increasing the rank M = 3, in Fig. 12 compared to Fig.
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Fig. 11: MSE vs SNR in dB for P = 4 with M = 2, N = 6.

11, and for a relatively “small” order P = 4, gives a comparable behavior
between the VTT-RecALS-SIP and the ND-ESPRIT algorithms, the difference
of the computational time of both methods is evaluated in the next section.
Meanwhile the gap with CP-VDM becomes more pronounced. More interesting
cases with a higher order P are considered in the next experiments. In the
following figures, we choose P = 6. In Fig. 13, we fix M = 2 and N = 6.
We remark that, as in the previous section, the VTT-RecALS-SIP becomes
more robust when the order increases, and is efficient for a wide range of SNR.
This justifies that VTT-RecALS-SIP is well designed for high-order tensors. A
last scenario for robustness simulations is with P = 6, N = 8 and M = 2,
considered in Fig. 14. The ND-ESPRIT is not depicted here due to its too high
computational complexity for high-order tensors. In this figure, we compare
the VTT-RecALS-SIP algorithm with CPD-RecALS and CPD-RecALS-TR1A.
We recall that the CPD-RecALS is the RecALS algorithm applied to a P -order
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Fig. 12: MSE vs SNR in dB for P = 4 with M = 3, N = 6.
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Fig. 13: MSE vs SNR in dB for P = 6 with M = 2, N = 6.

tensor using a naive rectification, by dividing each column by its first entry, to
refine the Vandermonde structure, whereas CPD-RecALS-TR1A uses the TR1A
rectification. Note that the CPD-RecALS-TR1A is efficient for positive SNR,
but is computationally intense, which means that VTT-RecALS-SIP is the best
tradeoff between noise robustness and computational complexity in this case.

5.2.2. Computational times

In this section, the computational time is evaluated using the native “Tic-
Toc” functions of MatLab. In the following figures, we generate a 6-order rank-2
tensor of size N1× · · · ×N6, we fix SNR = 5dB, and we vary the number of the
measurements as the product of the dimensions N1N2 · · ·N6. In Fig. 15, we
start with a tensor of size 4× · · · × 4, having 46 measurements, and we increase
each Ni to Ni = 6, having at the end 66 measurements. The same methodology
is used in Fig. 16, changing each dimension from Ni = 6 to Ni = 8.
Note that in Fig. 15 the computational time of ND-ESPRIT grows faster than
the other algorithms. For larger number of measurements in Fig. 16, the ND-
ESPRIT is removed due to its too high computational time. Note that, like
all the ALS-based estimators, CPD-RecALS-TR1A has also an intense compu-
tational time since it is an iterative algorithm applied to high-order tensors.
For example, for a 6-order tensor of size 8 × · · · × 8 which corresponds to 86

20



-10 -5 0 5 10 15 20
10

-8

10
-6

10
-4

10
-2

10
0

10
2

Fig. 14: MSE vs SNR in dB for P = 6 with M = 2, N = 8.

measurements, we have an interesting computational gain of more than 50 for
VTT-RecALS-SIP compared to CPD-RecALS-TR1A for the same noise robust-
ness (see Fig. 14). On the other side, we have a comparable computational
time for VTT-RecALS-SIP and CP-VDM which is a non-iterative algorithm,
unlike VTT-RecALS-SIP. This can be justified by the dimensionality reduction
step, and by the fact that the computational time of VTT-RecALS-SIP is ap-
proximately the one of TT-SVD algorithm when P � 1. As a conclusion, we
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Fig. 15: CPU time versus the number of measurements for P = 6, M = 2, Ni = (4, 6), and
SNR= 5dB.

can say that VTT-RecALS-SIP offers the best tradeoff between noise robustness
and computational complexity.

6. Conclusion

Multidimensional Harmonic Retrieval (MHR) is at the heart of many impor-
tant signal-based applications. The MHR problem admits a natural formulation
into the tensor (a.k.a. multi-way array) framework, usually called generalized
Vandermonde CPD. Joint exploitation of multi-diversity/modality sensing tech-
nologies for data fusion increases inexorably the tensor order/dimensionality.
Thus, efficient estimation schemes have to face to the well-known “curse of
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Fig. 16: CPU time versus the number of measurements for P = 6, M = 2, Ni = (6, 8), and
SNR= 5dB.

dimensionality”. The challenge here is to reformulate a high-order tensor as
a set of low-order tensors, called cores or nodes into the graph-based formal-
ism. Splitting the initial multidimensional optimization problem into a sum
of low dimensionality optimization problems for each node of the graph has
at least two advantages. Firstly, ill-converging problems for high dimensional
optimization are considerably mitigated. Secondly, thanks to the graph-based
formalism, some lattent coupling properties between the nodes of the graph can
be revealed. As a consequence, new optimization strategies taking the coupling
relations into account can be designed. In this work, a new scheme, called VTT-
RecALS-SIP, belonging to the JIRAFE (Joint dImensionality Reduction And
Factors rEtrieval) family, is proposed for the MHR problem. The aim of the first
step of the VTT-RecALS-SIP scheme is to reduce the dimension of the initial
Least-Square optimization problem or equivalently to recover the nodes in the
popular and simple graph called Tensor Train. We show that due to the MHR
problem structure, each node in the TT is associated to a partially structured
VTT-core coupled with its two neighbors (in a graph-based sense) VTT-cores.
In other words, the initial difficult multidimensional LS optimization problem is
now reformulated as a more tractable and flexible equivalent optimization prob-
lem, i.e., as the sum of coupled low dimensional LS optimization problems. The
second step is dedicated to the Vandermonde-based factor retrieval, i.e., the es-
timation of the parameters of interest automatically paired. To reach this goal,
a new rectified ALS algorithm is proposed and adapted to the exploitation of
the coupling properties between the VTT-cores. Specifically, the Vandermonde
rectification exploits the Shift Invariance Property (SIP). Numerical simulations
show the effectiveness of the proposed VTT-RecALS-SIP method in terms of
noise robustness and computational cost compared to other state-of-art meth-
ods.
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[18] W. Hackbusch and S. Kühn, A new scheme for the tensor representation,
Journal of Fourier Analysis and Applications, vol. 15, pp. 706-722, 2009.

[19] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimension-
ality, or how to use SVD in many dimensions, SIAM Journal on Scientific
Computing, vol. 31, pp. 3744-3759, 2009.

[20] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific
Computing, vol. 33, pp. 2295-2317, 2011.

[21] D. Kressner, M. Steinlechner and B. Vandereycken, Low-rank tensor com-
pletion by Riemannian optimization, BIT Numerical Mathematics, vol. 54,
pp. 447-468, 2014.
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